Входя на эту страницу, Вы подтверждаете, что являетесь  медицинским работником.

Status message

Not the entire site translated, but only to "Magazine"

Pharmacogenetic aspects of the effectiveness of clozapine therapy in treatment resistant schizophrenia

V.V. Kravtsov1,2, I.A. Filippov1,2, N.A. Shnayder1, N.G. Neznanov1, R.F. Nasyrova1
1V.M. Bekhterev National Medical Research Center of Psychiatry and Neurology, Saint-Petersburg, Russia
2Saint-Petersburg State University, Saint-Petersburg, Russia

Summary.The incidence of treatment-resistant schizophrenia (TRS) among psychiatric patients currently is estimated to be in the range of 20–40 % and remains unchanged over the past decade. Among atypical antipsychotics оnly clozapine is known to have 30–60 % efficacy in patients with TRS. Purpose of the study was to identify candidate genes, as well as study and systematization of data on the effect of SNPs on the effectiveness of clozapine therapy in resistant schizophrenia. Methods. Analysis of English and Russian-language literature by keywords was performed. Depth search was 19882018 years (30 years). Used the following databases: PubMed, MedLine, Web of Science Core Collection (Clarivate Analytics), Web Science, Russian Science Citation Index, Scopus, Scientific Research, Google Scholar, Oxford Press, eLIBRARY. Results. In total 41 SNPs of serotonin receptor genes isoforms HTR (1A, 2A, 2C, 3A, 3B, 4,6), epinephrine receptor (ADRA2A, ADRB3) and the other SNPs associated with clozapine treatment efficiency was analyzed. An attempt to explain the contradictions obtained during the study was made. Conclusion. SNPs of the serotonergic system genes are perspective markers of the therapeutic response to clozapine in TRS therapy. Univocal results at the moment were obtained only for rs6314 HTR2A. Other SNPs have either a controversial or insufficiently significant contribution to the development of a therapeutic response. It is necessary to conduct multi-center studies and pay more attention to features of the effect of SNP candidate genes among different ethnic groups.

Contact: nreginaf77@gmail.com

References: 

1. Kennedy J.L., Altar C.A., Taylor D.L. et al. The social and economic burden of treatment-resistant schizophrenia: a systematic literature review // International Clinical Psychopharmacology. – 2014. – Vol. 29, No. 2. – P. 63–76.
2. Weiss E.L., Longhurst J.G., Bowers M.B. et al. Olanzapine for treatment-refractory psychosis in patients responsive to, but intolerant of, clozapine // Journal of Clinical Psychopharmacology. – 1999. – Vol. 19, No. 4. – P. 378–380.
3. Mosolov S.N., Potapov A.V., Ushakov U.V. Remission in schizophrenia: results of cross-sectional with 6-month follow-up period and 1-year observational therapeutic studies in an outpatient population // Annals of General Psychiatry. – 2012. – Vol. 11, No. 1. – P. 1.
4. Tochilov V.A., Kushnir O.N. Klozapin – pervy`j atipichny`j antipsixotik. Neispol`zuemy`e vozmozhnosti. Soobshhenie 1 // Obozrenie psixiatrii i medicinskoj psixologii imeni V.M. Bextereva. – 2010. – № 3. – S. 8–10.
5. Alfimov P.V., Oleneva E.V., Mosolov S.N. Prognosticheskie faktory` terapevticheskoj e`ffektivnosti klozapina pri shizofrenii // Sovremennaya terapiya psixicheskix rasstrojstv. – 2013. – № 2. – C. 21–29.
6. Wilson W.H. Time required for initial improvement during clozapine treatment of refractory schizophrenia // The American Journal of Psychiatry. – 1996. – Vol. 153, No. 7. – P. 951.
7. Ashby Jr C.R., Edwards E., Harkins K.L. et al. Differential effect of typical and atypical antipsychotic drugs on the suppressant action of 2-methylserotonin on medical prefrontal cortical cells: a microiontophoretic study // European Journal of Pharmacology. – 1989. – Vol. 166, No. 3. – P. 583.
8. Meltzer H.Y., Nash J.F. Effects of antipsychotic drugs on serotonin receptors // Pharmacological Reviews. – 1991. – Vol. 43, No. 4. – P. 587–604.
9. Andree T.H., Mikuni M., Tong C.Y. et al. Differential effect of subchronic treatment with various neuroleptic agents on serotonin2 receptors in rat cerebral cortex // Journal of Neurochemistry. – 1986. – Vol. 46, No. 1. – P. 191–197.
10. Nordström A.L., Farde L., Halldin C. High 5-HT 2 receptor occupancy in clozapine treated patients demonstrated by PET // Psychopharmacology. – 1993. – Vol. 110, No. 3. – P. 365–367.
11. Farde L., Nordström A.L., Nyberg S. et al. D1-, D2-, and 5-HT2-receptor occupancy in clozapine-treated patients // The Journal of Clinical Psychiatry. – 1994. – Vol. 55. – P. 67–69.
12. Joober R., Benkelfat C., Brisebois K. et al. T102C polymorphism in the 5HT2A gene and schizophrenia: relation to phenotype and drug response variability // Journal of Psychiatry and Neuroscience. – 1999. – Vol. 24, No. 2. – P. 141.
13. Grinshpoon A., Valevski A., Moskowitz M. et al. Beneficial effect of the addition of the 5-HT 2A/2C and α2 antagonist mianserin to ongoing haloperidol treatment in drug-resistant chronically hospitalized schizophrenic patients // European Psychiatry. – 2000. – Vol. 15, No. 6. – P. 388–390.
14. Malhotra A.K., Goldman D., Ozaki N. et al. Lack of association between polymorphisms in the 5-HT2A receptor gene and the antipsychotic response to clozapine // The American Journal of Psychiatry. – 1996. – Vol. 153, No 8. – P. 1092.
15. Bloom F.E., Morales M. The central 5-HT 3 receptor in CNS disorders // Neurochemical research. – 1998. – Vol. 23, No. 5. – P. 653–659.
16. Maziade M., Raymond V., Cliche D. et al. Linkage results on 11Q21‐22 in Eastern Quebec pedigrees densely affected by schizophrenia // American Journal of Medical Genetics. – 1995. – Vol. 60, No. 6. – P. 522–528.
17. Levinson D.F., Mahtani M.M., Nancarrow D.J. et al. Genome scan of schizophrenia // American Journal of Psychiatry. – 1998. – Vol. 155, No. 6. – P. 741–750.
18. Gutiérrez B., Arranz M.J., Huezo-Diaz P. et al. Novel mutations in 5-HT3A and 5-HT3B receptor genes not associated with clozapine response // Schizophrenia Research. – 2002. – Vol. 58, No. 1. – P. 93–97.
19. Suzuki T., Iwata N., Kitamura Y. et al. Association of a haplotype in the serotonin 5‐HT4 receptor gene (HTR4) with Japanese schizophrenia // American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. – 2003. – Vol. 121, No. 1. – P. 7–13.
20. Van Tol H.H.M., Seeman P. The dopamine D₄ receptor: A novel site for antipsychotic action // Clinical Neuropharmacology. – 1995. – Vol. 291, No. 15. – P. 59–66.
21. Bosia M., Lorenzi C., Pirovano A. et al. COMT Val158Met and 5-HT1A-R-1019 C/G polymorphisms: effects on the negative symptom response to clozapine // Pharmacogenomics. – 2015. – Vol. 16, No. 1. – P. 35–44.
22. Gupta M., Jain S., Moily N.S. et al. Genetic studies indicate a potential target 5‐HTR3B for Drug Therapy in Schizophrenia Patients // American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics. – 2012. – Vol. 159, No. 8. – P. 1006–1008.
23. Arranz M.J., Collier D.A., Munro J. et al. Analysis of a structural polymorphism in the 5-HT2A receptor and clinical response to clozapine // Neuroscience letters. – 1996. – Vol. 217, No. 2–3. – P. 177–178.
24. Arranz M.J., Munro J., Sham P. et al. Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response // Schizophrenia Research. – 1998. – Vol. 32, No. 2. – P. 93–99.
25. Masellis M., Basile V., Meltzer H.Y. et al. Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients // Neuropsychopharmacology. – 1998. – Vol. 19, No. 2. – P. 123.
26. Arranz M.J., Munro J., Owen M.J. et al. Evidence for association between polymorphisms in the promoter and coding regions of the 5-HT 2A receptor gene and response to clozapine // Molecular Psychiatry. – 1998. – Vol. 3, No. 1. – P. 61.
27. Lin C.H., Tsai S.J., Yu Y.W.Y. et al. No evidence for association of serotonin-2A receptor variant (102T/C) with schizophrenia or clozapine response in a Chinese population // Neuroreport. – 1999. – Vol. 10, No. 1. – P. 57–60.
28. Yu Y.W.Y., Tsai S.J., Yang K.H. et al. Evidence for an Association between Polymorphism in the Serotonin-2A Receptor Variant (102T/C) and Increment of N100Am plitude in Schizophrenics Treated with Clozapine // Neuropsychobiology. – 2001. – Vol. 43, No. 2. – P. 79–82.
29. Reynolds G.P., Yao Z., Zhang X. et al. Pharmacogenetics of treatment in first-episode schizophrenia: D3 and 5-HT2C receptor polymorphisms separately associate with positive and negative symptom response // European Neuropsychopharmacology. – 2005. – Vol. 15, No. 2. – P. 143–151.
30. Malhotra A.K., Goldman D., Ozaki N. et al. Clozapine response and the 5HT2C Cys23Ser polymorphism // Neuroreport. – 1996. – Vol. 7, No. 13. – P. 2100-2102.
31. Sodhi M.S., Arranz M.J., Curtis D. et al. Association between clozapine response and allelic variation // Neuroreport. – 1995. – Vol. 7. – P. 169–72.
32. Ji X., Takahashi N., Saito S. et al. Relationship between three serotonin receptor subtypes (HTR3A, HTR2A and HTR4) and treatment-resistant schizophrenia in the Japanese population // Neuroscience Letters. – 2008. – Vol. 435, No. 2. – P. 95–98.
33. Gutiérrez B., Arranz M.J., Huezo-Diaz P. et al. Novel mutations in 5-HT3A and 5-HT3B receptor genes not associated with clozapine response // Schizophrenia Research. – 2002. – Vol. 58, No. 1. – P. 93–97.
34. Rajkumar A.P., Poonkuzhali B., Kuruvilla A. et al. Outcome definitions and clinical predictors influence pharmacogenetic associations between HTR3A gene polymorphisms and response to clozapine in patients with schizophrenia // Psychopharmacology. – 2012. – Vol. 224, No. 3. – P. 441–449.
35. Yu Y.W.Y., Tsai S.J., Lin C.H. et al. Serotonin-6 receptor variant (C267T) and clinical response to clozapine // Neuroreport. – 1999. – Vol. 10, No. 6. – P. 1231–1233.
36. Masellis M., Basile V.S., Meltzer H.Y. et al. Lack of association between the T → C 267 serotonin 5-HT6 receptor gene (HTR6) polymorphism and prediction of response to clozapine in schizophrenia // Schizophrenia research. – 2001. – Vol. 47, No. 1. – P. 49–58.
37. Bolonna A.A., Arranz M.J., Munro J. et al. No influence of adrenergic receptor polymorphisms on schizophrenia and antipsychotic response // Neuroscience Letters. – 2000. – Vol. 280, No. 1. – P. 65–68.
38. Jenkins A., Apud J.A., Zhang F. et al. Identification of candidate single-nucleotide polymorphisms in NRXN1 related to antipsychotic treatment response in patients with schizophrenia // Neuropsychopharmacology. – 2014. – Vol. 39, No. 9. – P. 2170.
39. Souza R.P., Meltzer H.Y., Lieberman J.A. et al. Influence of neurexin 1 (NRXN1) polymorphisms in clozapine response // Human Psychopharmacology: Clinical and Experimental. – 2010. – Vol. 25, No. 7‐8. – P. 582–585.
40. Lett T.A., Tiwari A.K., Meltzer H.Y. et al. The putative functional rs1045881 marker of neurexin-1 in schizophrenia and clozapine response // Schizophrenia Research. – 2011. – Vol. 132, No. 2–3. – P. 121–124.
41. Brandl E.J., Lett T.A., Chowdhury N.I. et al. The role of the ITIH3 rs2535629 variant in antipsychotic response // Schizophrenia research. – 2016. – Vol. 176, No. 2–3. – P. 131–135.
42. Hamdani N., Tabeze J.P., Ramoz N. et al. The CNR1 gene as a pharmacogenetic factor for antipsychotics rather than a susceptibility gene for schizophrenia // European Neuropsychopharmacology. – 2008. – Vol. 18, No. 1. – P. 34–40.
43. Zhang J.P., Lencz T., Geisler S. et al. Genetic variation in BDNF is associated with antipsychotic treatment resistance in patients with schizophrenia // Schizophrenia Research. – 2013. – Vol. 146, No. 1–3. – P. 285–288.
44. Zai G.C., Zai C.C., Chowdhury N.I. et al. The role of brain-derived neurotrophic factor (BDNF) gene variants in antipsychotic response and antipsychotic-induced weight gain // Progress in Neuro-Psychopharmacology and Biological Psychiatry. – 2012. – Vol. 39, No. 1. – P. 96–101.
45. Hong C.J., Yu Y.W.Y., Lin C.H. et al. An association study of a brain-derived neurotrophic factor Val66Met polymorphism and clozapine response of schizophrenic patients // Neuroscience Letters. – 2003. – Vol. 349, No. 3. – P. 206–208.
46. Kaur H., Jajodia A., Grover S. et al. Genetic variations of PIP4K2A confer vulnerability to poor antipsychotic response in severely ill schizophrenia patients // PloS One. – 2014. – Vol. 9, No. 7. – P. e102556.
47. Tsai S.J., Hong C.J., Yu Y.W.Y. et al. No association of tumor necrosis factor alpha gene polymorphisms with schizophrenia or response to clozapine // Schizophrenia Research. – 2003. – Vol. 65, No. 1. – P. 27–32.
48. Zai G., Müller D.J., Volavka J. et al. Family and case–control association study of the tumor necrosis factor-alpha (TNF-α) gene with schizophrenia and response to antipsychotic medication // Psychopharmacology. – 2006. – Vol. 188, No. 2. – P. 171–182.
49. Müller D.J., De Luca V., Sicard T. et al. Suggestive association between the C825T polymorphism of the G-protein β3 subunit gene (GNB3) and clinical improvement with antipsychotics in schizophrenia // European Neuropsychopharmacology. – 2005. – Vol. 15, No. 5. – P. 525–531.
50. Kohlrausch F.B., Salatino-Oliveira A., Gama C.S. et al. G-protein gene 825C > T polymorphism is associated with response to clozapine in Brazilian schizophrenics. – 2008. – Vol. 15, No. 5. – P. 1429–1436.
51. Souza R.P., Romano-Silva M. A., Lieberman J.A. et al. Association study of GSK3 gene polymorphisms with schizophrenia and clozapine response // Psychopharmacology. – 2008. – Vol. 200, No. 2. – P. 177.
52. Südhof T. C. Neuroligins and neurexins link synaptic function to cognitive disease // Nature. – 2008. – Vol. 455, No. 7215. – P. 903.
53. Zill P., Baghai T.C., Zwanzger P. et al. Evidence for an association between a G-protein β3-gene variant with depression and response to antidepressant treatment // Neuroreport. – 2000. – Vol. 11, No. 9. – P. 1893–1897.
54. Nasy`rova R.F., Ivanov M.V., Neznanov N.G. Vvedenie v psixofarmakogenetiku. – SPb.: Izd-vo SPb NIPNI im. V.M. Bextereva, 2015. – 272 s.