Status message

Not the entire site translated, but only to "Journal"

A Fresh Approach to the Pathogenesis of Depression: Is the Appearance of Rapid-Acting Antidepressants Possible?

S.N. Mosolov, E.Yu. Fedorova
Moscow Research Institute of Psychiatry – a branch of the FSBI “National Medical Research Center for Psychiatry and Addiction named after V.P. Serbian” Ministry of Health of Russian Federation, Moscow, Russia 
Abstract: Major depressive disorder (MDD) is one of the most common and high-cost mental disorders. Currently, the monoamine theory of depression is relevant, but about 20 years ago, the discovery of the antidepressant properties of ketamine, which is an antagonist of NMDA receptors, served as an impetus for revising the views on the pathogenesis of depression and creating the concept of rapid-acting antidepressants. This review summarizes the mechanism of action of ketamine as a rapid-acting antidepressant and considers the role of glutamatergic and serotoninergic systems. The search was carried out on the PubMed and Google Scholar databases for the following keywords: ketamine, NMDA, AMPA, rapid-action antidepressant, glutamatergic system, serotoninergic system.
CONTACTS: profmosolov@mail.ru
https://orcid.org/0000000257493964
CITATION: Mosolov S.N., Fedorova E.Yu. A Fresh Approach to the Pathogenesis of Depression: Is the Appearance of Rapid-Acting Antidepressants Possible? // Sovrem. ter. psih. rasstrojstv. – 2020. – No. 3. – P. 2–10. – https://orcid.org/0000000257493964 – DOI: 10.21265/PSYPH.2020.79.58.001
 

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

References: 

1.    Costae Silva J.A. Facing depression. Editorial // WPA Teaching Bulletin on Depression. 1993. – Vol. 1, No. 1. – P. 1.
2.    Greenberg P.E., Fournier A.A., Sisitsky T. et al. The economic burden of adults with major depressive disorder in the United States (2005 and 2010) // J Clin Psychiatry – 2015. – Vol. 76. – P. 155–162.
3.    World Health Organization. Depression and Other Common Mental Disorders. – 2017. – Available at: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017... (accessed June, 12, 2020).
4.    Iversen L. The monoamine hypothesis of depression // Biology of Depression. – Weinheim: Wiley-VCH, 2005. – P. 71–86.
5.    Mosolov S.N. Sovremennye biologicheskie gipotezy rekurrentnoi depressii (obzor) // Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 2012. – T. 112, № 11–2. – S. 29–40.
6.    Mosolov S.N. Klinicheskoe primenenie sovremennykh antidepressantov. – SPb.: Meditsinskoe informatsionnoe agentstvo, 1995. – 568 s.
7.    Rush A.J., Trivedi M.H., Wisniewski S.R. et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: STAR*D report // Am J Psychiatry – 2006. – No. 163 (11). – P. 1905–1917.
8.    Bergfeld I.O., Mantione M., Figee M. et al. Treatment-resistant depression and suicidality // J Affect Disord. – 2018. – Vol. 235. – P. 362–367. 
9.    Mosolov S.N., Kostyukova E.G. Lechenie bol'nykh s rekurrentnym depressivnym rasstroistvom // Psikhiatriya: natsional'noe rukovodstvo / pod red. N.G. Neznanova, Yu.A. Aleksandrovskogo. – M.: GEOTAR-Media, 2018. – S. 347–378. 
10.    Witkin J.M., Knutson D.E., Rodriguez G.J., Shi S. Rapid-Acting Antidepressants // Current Pharmaceutical Design. – 2018. – Vol. 24. – P. 1–8. 
11.    Lewis C.M., Ng M.Y., Butler A.W. et al. Genome-Wide Association Study of Major Recurrent Depression in the U.K. // Population Am J Psychiatry. – 2010, Aug. – Vol. 167 (8). – P. 949–957.
12.    Tansey K.E., Guipponi M., Perroud N. et al. Genetic Predictors of Response to Serotonergic and Noradrenergic Antidepressants in Major Depressive Disorder: A Genome-Wide Analysis of Individual-Level Data and a Meta-Analysis // PLOS Medicine – 2012, Oct. – Available at: https://paperity.org/p/61761097/genetic-predictors-of-response-to-seroto... (accessed June, 12, 2020).
13.    Kirsch I., Deacon B.J., Huedo-Medina T.B. et al. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration // PLoS Med. – 2008. –Vol. 5. – P. e45. 
14.    Fournier J.C., De Rubeis R.J., Hollon S.D. et al. Antidepressant drug effects and depression severity: a patient-level meta-analysis // JAMA. – 2010. – Vol. 6, No. 303 (1). – P. 47–53.
15.    Berman R.M., Cappiello A., Anand A. et al. Antidepressant effects of ketamine in depressed patients // Biol Psychiatry. – 2000. – Vol. 47 (4). – P. 351–354.
16.    Zarate C.A. Jr, Singh J.B., Carlson P.J. et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression // Arch Gen Psychiatry. – 2006. – Vol. 63 (8). – P. 856–864.
17.    Kuchmenko D.N., Kozlovskii V.L. Ketamin — atipichnyi antidepressant ili sredstvo urgentnoi psikhotropnoi terapii? (obzor) // Obozrenie psikhiatrii i meditsinskoi psikhologii. – 2014. – № 1. – S. 3–9. 
18.    Dorovskikh I.V., Pavlova T.A., Shaidegger Yu.M. Ketamin: novyi vzglyad na terapevticheskie vozmozhnosti v psikhiatricheskoi praktike (obzor) // Sovremennaya terapiya psikhicheskikh rasstroistv. – 2016. – № 3. – S. 9–15.
19.    McGirr A., Berlim M.T., Bond D.J. et al. A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes // Psychol Med. – 2015. – Vol. 45 (4). – P. 693–704. 
20.    Romeo B., Choucha W., Fossati P., Rotge J.Y. Meta-analysis of short- and mid-term efficacy of ketamine in unipolar and bipolar depression // Psychiatry Res. – 2015. – Vol. 230 (2). – P. 682–688.
21.    Kishimoto T., Chawla J.M., Hagi K., Zarate C.A. et al. Single-dose infusion ketamine and non-ketamine N-methyl-D-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories // Psychol Med. – 2016. – Vol. 46 (7). – P.1459–1472.
22.    Wilkinson S.T., Ballard E.D., Bloch M.H. et al. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis // Am J Psychiatry. – 2017. – Vol. 175. – P. 150–158. – DOI: 10.1176/appi.ajp.2017.17040472
23.    Sanacora G., Frye M.A., McDonald W. et al. A consensus statement on the use of ketamine in the treatment of mood disorders // JAMA Psychiatry. – 2017. – Vol. 74 (4). – P. 399–405.
24.    Kraus C., Rabl U., Vanicek T. et al. Administration of ketamine for unipolar and bipolar depression // International Journal of Psychiatry in clinical practice. – 2017, Mar. – Vol. 21 (1). – P. 2–12. – DOI: 10.1080/13651501.2016.1254802
25.    Monteggia L.M., Malenka R.C., Deisseroth K. Depression: the best way forward // Nature. – 2014. – Vol. 515. – P. 200–201. 
26.    Zanos P., Gould T.D. Mechanisms of ketamine action as an antidepressant // Mol Psychiatry. – 2018. – Vol. 23. – P. 801–811. 
27.    Bessa J.M., Ferreira D., Melo I. et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling // Mol Psychiatry. – 2009. – Vol. 14. – P. 739, 764–773. 
28.    Duman R.S., Aghajanian G.K., Sanacora G., Krystal J.H. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants // Nat Med. – 2016. – Vol. 22. – P. 238–249. 
29.    Citri A., Malenka R.C. Synaptic plasticity: multiple forms, functions, and mechanisms // Neuropsychopharmacology. – 2008. – Vol. 33 (1). – P. 18–41.
30.    Kang H.J., Voleti B., Hajszan T. et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder // Nat Med. – 2012. – Vol. 18 (9). – P. 1413–1417. 
31.    Gerhard D.M., Wohleb E.S., Duman R.S. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity // Drug Discov Today. – 2016, Mar. – 21 (3). – P. 454–464. 
32.    Yuan T.F., Hou G. The effects of stress on glutamatergic transmission in the brain // Mol Neurobiol. – 2015. –Vol. 51 (3). – P. 1139–1143. 
33.    Muller H.K., Wegener G., Liebenberg N., Zarate C.A. et. al. Ketamine regulates the presynaptic release machinery in the hippocampus // J Psychiatr Res. – 2013, Jul. – Vol. 47 (7). – P. 892–899.
34.    Abdallah C.G., Averill L.A., Krystal J.H. Ketamine as a promising prototype for a new generation of rapid-acting antidepressants // Ann N Y Acad Sci. – 2015. – Vol. 1344. – P. 66–77.
35.    Joels M., Pasricha N., Karst H. The interplay between rapid and slow corticosteroid actions in brain // Eur J Pharmacol. – 2013, Nov, 5. – Vol. 719 (1–3). – P. 44–52. 
36.    Radley J., Morilak D., Viau V., Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders // NeurosciBiobehav Rev. – 2015, Nov. – Vol. 58. – P. 79–91.
37.    Gärtnera M., Austa S., Bajbouja M. et al. Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine // Eur Neuropsychopharmacol. – 2019, Apr. – Vol. 29 (4). – P. 501–508.
38.    Kadriu, B. et al. Glutamatergic neurotransmission: pathway to developing novel rapid-acting antidepressant treatments // Int J Neuropsychopharmacol. – 2019. – No. 22. – P. 119–135. 
39.    Drevets, W.C., Savitz, J., Trimble, M. The subgenual anterior cingulate cortex in mood disorders // CNS Spectr. – 2008. – Vol. 13. – P. 663–681.
40.    Shao R., Lau W.K.W., Leung M.K., Lee T.M.C. Subgenual anterior cingulate-insula resting-state connectivity as a neural correlate to trait and state stress resilience // Brain Cogn. – 2018. – Vol. 124. – P. 73–81.
41.    Brennan T.J. AMPA/Kainate receptor antagonists as novel analgesic agents // Anesthesiology. – 1998. –Vol. 89. – P. 1049–1051.
42.    Mion G., Villevieille T. Ketamine Pharmacology: An Update (Pharmacodynamics and Molecular Aspects, Recent Findings) // CNS Neuroscience & Therapeutics. – 2013. – Vol. 19. – P. 370–380.
43.    Stephen M. Stahl Stahl’s Essential Psychopharmacology Neuroscientific Basis and Practical Application. – Fourth Edition. – P. 52–78. – Available at: https://stahlonline.cambridge.org/essential_4th.jsf (accessed June, 16, 2020).
44.    Li N., Lee B., Liu R.J. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists // Science. – 2010. – No. 329. – P. 959–964. 
45.    Leal G., Comprido D., Duarte C.B. BDNF-induced local protein synthesis and synaptic plasticity // Neuropharmacology. – 2014. – No. 76. – P. 639–656.
46.    Liu R.J., Lee F.S., Li X.Y. et al. Brain-derived neurotrophic factor val66met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex // Biol Psychiatry – 2012. – No. 71. – P. 996–1005.
47.    Autry A.E., Adachi M., Nosyreva E. et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses // Nature. – 2011. – No. 475. – P. 91–95.
48.    Monteggia L.M., Gideons E., Kavalali E.T. The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine // Biol Psychiatry. – 2013. – No. 73. – P. 1199–1203. 
49.    Hardingham G.E., Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders // Nat Rev Neurosci. – 2010, Oct. – Vol. 11 (10). – P. 682–696.
50.    Gray J.A., Shi Y., Usui H. et al. Distinct modes of AMPA receptor suppression at developing synapses by glun2a and glun2b: single-cell NMDA receptor subunit deletion in vivo // Neuron. – 2011. – No. 71. – P. 1085–1101.
51.    Miller O.H., Yang L., Wang C.C. et al. Glun2b-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine // Elife. – 2014. – No. 3. – P. 03581. 
52.    Miller O.H., Bruns A., Ben Ammar I. et al. Synaptic regulation of a thalamocortical circuit controls depression-related behavior // Cell Rep. – 2017. – No. 20. – P. 1867–1880.
53.    Henley J.M., Wilkinson K.A. Synaptic AMPA receptor composition in development, plasticity and disease // Nat Rev Neurosci. – 2016. – No. 17 (6). – P. 337–350.
54.    Derkach V.A., Oh M.C., Guire E.S. et al. Regulatory mechanisms of AMPA receptors in synaptic plasticity // Nat Rev Neurosci. – 2007. – No. 8 (2). – P. 101–113.
55.    Abdallah C.G., Sanacora G., Duman R.S. et al. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics // Annu Rev Med. – 2015. – No. 66. – P. 509–523.
56.    Zanos P., Moaddel R., Morris P.J. et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites // Nature. – 2016. – No. 533 (7604). – P. 481–486.
57.    Maeng S., Zarate C.A. Jr, Du J. et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5methylisoxazole-4-propionic acid receptors // Biol Psychiatry. – 2008. – No. 63 (4). – P. 349–352. 
58.    Yang C., Shirayama Y., Zhang J.C. et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects // Transl Psychiatry. – 2015. – No. 5. – P. 632.
59.    Koike H., Chaki S. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats // Behav Brain Res. – 2014. – No. 1 (271), – P. 111–115.
60.    Walker A.K., Budac D.P., Bisulco S. et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice // Neuropsychopharmacology. – 2013. – No. 38 (9). – P. 1609–1616. 
61.    Zhou W., Wang N., Yang C. et al. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex // Eur Psychiatry. – 2014. – No. 29 (7). – P. 419–423.
62.    Karasawa J., Shimazaki T., Kawashima N., et al. AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist // Brain Res. – 2005. – No. 1042 (1). – P. 92–98. 
63.    Wolak M., Siwek A., Szewczyk B. et al. Involvement of NMDA and AMPA receptors in the antidepressant-like activity of antidepressant drugs in the forced swim test // Pharmacol Rep. – 2013. – No. 65 (4). – P. 991–997. 
64.    Whittington M.A., Traub R.D., Kopell N. et al. Inhibition-based rhythms: experimental and mathematical observations on network dynamics // Int J Psychophysiol. – 2000. – No. 38 (3). – P. 315–336. 
65.    Muthukumaraswamy S.D., Shaw A.D., Jackson L.E. et al. Evidence that subanesthetic doses of ketamine cause sustained disruptions of NMDA and AMPA-mediated frontoparietal connectivity in humans // J Neurosci. – 2015. – No. 35 (33). – P. 11694–11706.
66.    Sanacora G., Smith M.A., Pathak S. et al. Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects // Mol Psychiatry. – 2014. – No. 19 (9). – P. 978–985.
67.    Lazarewicz M.T., Ehrlichman R.S., Maxwell C.R. et al. Ketamine modulates theta and gamma oscillations // J Cogn Neurosci. – 2010. – No. 22 (7). – P. 1452–1464.
68.    Buzsaki G., Wang X.-J. Mechanisms of gamma oscillations // Annu Rev Neurosci. – 2012. – No. 35. – P. 203–225.
69.    Zanos P., Thompson S. M., Duman R.S. et al. Gould Convergent Mechanisms Underlying Rapid Antidepressant Action // CNS Drugs. – 2018, March, 7. –  Vol. 32. – P. 197–227. – DOI: 10.1007/s40263-018-0492-x
70.    Bjorkholm C., Jardemark K., Schilstrom B. et al. Ketamine-like effects of a combination of olanzapine and fluoxetine on AMPA and NMDA receptor-mediated transmission in the medial prefrontal cortex of the rat // Eur Neuropsychopharmacol. – 2015. – No. 25 (10). – P. 1842–1847.
71.    El Iskandrani K.S., Oosterhof C.A., El Mansari M. et al. Impact of subanesthetic doses of ketamine on AMPA-mediated responses in rats: an in vivo electrophysiological study on monoaminergic and glutamatergic neurons // J Psychopharmacol. – 2015. – No. 29 (7). – P. 792–801.
72.    Pham T.H., Defaix C., Xu X. et al. Common Neurotransmission Recruited in (R,S)-Ketamine and(2R,6R)-Hydroxynorketamine-InducedSustainedAntidepressant-like Effects // Biol. Psychiatry. – 2018. – No. 84. – P. 3–6.
73.    Gigliucci V., O’Dowd G., Casey S. et al. Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism // Psychopharmacology (Berl). – 2013. – No. 228. – P. 157–166.
74.    Du Jardin K.G., Liebenberg N., Muller H.K. et al. Differential interaction with the serotonin system by S-ketamine, vortioxetine, and fluoxetine in a genetic rat model of depression // Psychopharmacology (Berl). – 2016. – No. 233. – P. 2813–2825.
75.    Du Jardin K.G., Muller H.K., Elfving B. et al. Potential involvement of serotonergic signaling in ketamine’s antidepressant actions: a critical review // Prog Neuropsychopharmacol Biol Psychiatry. – 2016. – No. 71. – P. 27–38.
76.    Gryglewski G., Lanzenberger R., Kranz G.S. et al. Meta-analysis of molecular imaging of serotonin transporters in major depression // J Cereb Blood Flow Metab. – 2014. – No. 34. – P. 1096–1103. 
77.    Spies M., Knudsen G.M., Lanzenberger R. et al. The serotonin transporter in psychiatric disorders: insights from PET imaging // Lancet Psychiatry. – 2015. – No. 2. – P. 743–755.
78.    Zhao Y., Sun L. Antidepressants modulate the in vitro inhibitory effects of propofol and ketamine on norepinephrine and serotonin transporter function // J Clin Neurosci. – 2008. – No. 15. – P. 1264–1269. 
79.    Yamamoto S., Ohba H., Nishiyama S. et al. Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: APET study in conscious monkeys // Neuropsychopharmacology. – 2013. – No. 38. – P. 2666–2674. 
80.    Pham T.H., Mendez-David I., Defaix C. et al. Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJmice // Neuropharmacology. – 2017. – No. 112. – P. 198–209.
81.    Spies M., James G.M., Berroterán-Infante N. et al. Assessment of Ketamine Binding of the Serotonin Transporter in Humans with Positron Emission Tomography // Int J Neuropsychopharmacol. – 2018. – No. 21. – P. 145–153.
82.    Yamanaka H., Yokoyama C., Mizuma H. et al. A possible mechanism of the nucleus accumbens and ventral pallidum 5-HT1B receptors underlying the antidepressant action of ketamine: APET study with macaques // Transl Psychiatry. – 2014. – No. 4. – P. 342.
83.    Du Jardin K.G., Liebenberg N., Cajina M. et al. S-Ketamine Mediates Its Acute and Sustained Antidepressant-Like Activity through a 5-HT1B Receptor Dependent Mechanism in a Genetic Rat Model of Depression // Front Pharmacol. – 2018. – No. 8. – P. 978.
84.    Grieco S.F., Velmeshev D., Magistri M. et al. Ketamine up-regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthasekinase-3 // World J Biol Psychiatry. – 2017. – Vol. 18. – P. 445–456.
85.    Zhang K., Dong C., Fujita Y. et al.  5-Hydroxytryptamine-IndependentAntidepressant Actions of (R)-Ketamine in a Chronic Social Defeat Stress Model // Int J Neuropsychopharmacol. – 2018. – No. 21. – P. 157–163.
86.    Williams N.R., Schatzberg A.F. NMDA antagonist treatment of depression // Current Opinion in Neurobiology. – 2016. – No. 36. – P. 112–117.
87.    FDA News Release. FDA approves new nasal spray medication for treatment-resistant depression; available only at a certified doctor’s office or clinic. – March, 5, 2019. – Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-new-nas... (accessed June, 30, 2020).
88.    Wilkinson S.T., Wright D., Fasula M.K. et al. Cognitive behavior therapy may sustain antidepressant effects of intravenous ketamine in treatment-resistant depression // Psychother Psychosom. – 2017. – No. 86. – P. 162–167.
89.    Liu R. J., Duman C., Kato T., et al. GLYX-13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine // Neuropsychopharmacology. – 2017. – Vol. 42, No. 6. – P. 1231–1242.
90.    Dwyer J.M., Lepack A.E., Duman R.S. mGluR2/3 blockade produces rapid and long-lasting reversal of anhedonia caused by chronic stress exposure // J Mol Psychiatry. – 2013. – No. 1. – P. 15.
91.    Witkin J.M., Monn J.A., Li J. et al. Preclinical predictors that the orthosteric mGlu2/3 receptor antagonist LY3020371 will not engender ketamine-associated neurotoxic, motor, cognitive, subjective, orabuse-liability-relatedeffects // Pharmacol Biochem Behav. – 2017. – No. 155. – P. 43–55.