Входя на эту страницу, Вы подтверждаете, что являетесь  медицинским работником.

Status message

Not the entire site translated, but only to "Magazine"

The Role of Kynurenine Pathway in Development and Therapy of Depression

N.N. Petrova, M. A. Maiorova.
Saint-Petersburg State University, Department of Psychiatry and Narcology, Russian Federation

Abstract. Present article is the review of the mechanisms of depression that describes modern data on the kynurenine pathway. Depression is associated with reduced production of kynurenine acid and increased production of quinoline acid, as well as with changes in concentrations of other metabolites and enzymes (tryptophan, kynurenine, indoleamindioxygenase). Also noted the link between inflammation and stimulation of the kynurenine pathway. Treatment efficiency.is correlated with the production of kynurenine acid and of side metabolites of kynurenine pathway.

References: 
  • 1. Myint A.M., Schwarz M.J., Muller N. The role of the kynurenine metabolism in major depression // J Neural Transm. − 2012. – Vol. 119. – P. 245–251.
  • 2. Mosolov S.N. Sovremennye biologicheskie gipotezy rekurrentnoj depressii (obzor) // Zhurnal nevrologii i psihiatrii imeni S.S. Korsakova. – 2012. – T. 112, № 11−2. – S. 29–40.
  • 3. McInnis O.A., Matheson K., Anisman H. Living with the unexplained: coping, distress, and depression among women with chronic fatigue syndrome and/or fibromyalgia compared to an autoimmune disorder // Anxiety Stress Coping. – 2014. – Vol. 27. – P. 601–618.
  • 4. O’Brien S.M., Scully P., Fitzgerald P. et al. Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy // J Psychiatr Res. – 2017. – Vol. 41. – P. 326–331.
  • 5. Hochstrasser T., Ullrich C., Sperner-Unterweger B. et al. Inflammatory stimuli reduce survival of serotonergic neurons and induce neuronal expression of indoleamine 2,3-dioxygenase in rat dorsal raphe nucleus organotypic brain slices // Neuroscience. – 2011. – Vol. 184. – P. 128–138.
  • 6. Leklem J.E. Quantitative aspects of tryptophan metabolism in humans and other species: a review // Am J Clin Nutr. – 1971. – Vol. 24. – P. 659–672.
  • 7. Lopresti A.L, Maker G.L., Hood S.D. et al. A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers // Prog Neuropsychopharmacol Biol Psychiatry. – 2014. – Vol. 48. – P. 102–111.
  • 8. Myint A.M. Kynurenines: from the perspective of major psychiatric disorders // FEBS Journal. – 2012. – Vol. 270. – P. 1375–1385.
  • 9. Takikawa O. Biochemical and medical aspects of the indoeamine 2,3-dioxygenase-initiated l-tryptophan metabolism // Biochem Biophys Res Commun. – 2005. – Vol. 338. – P. 12–19.
  • 10. Mangoni A. The “kynurenine shunt” and depression // Adv Biochem Psychopharmacol. – 1974. – Vol. 11. – P. 293–298.
  • 11. Savitz J., Dantzer R., Wurfel B.E. et al. Neuroprotective kynurenine metabolite indices are abnormally reduced and positively associated with hippocampal and amygdalar volume in bipolar disorder // Psychoneuroendocrinology. – 2015. – Vol. 52. – P. 200–211.
  • 12. Heyes M.P., Saito K., Major E. O. et al. A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate // Brain. − 1993. − Vol. 2116. − P. 1425–1450.
  • 13. Chiarugi A., Calvani M., Meli E. et al. Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages // Journal of Neuroimmunol. – 2001. – Vol. 120. – P. 19–38.
  • 14. Dorovskih I.V., Pavlova T.A., Shajdegger Yu.M. Ketamin: novyj vzglyad na terapevticheskie vozmozhnosti v psihiatricheskoj praktike // Sovremennaya terapiya psihicheskih rasstrojstv. − 2016. − № 3. − S. 9−15.
  • 15. Guillemin G.J., Kerr S.J., Smythe G.A., et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection // J Neurochem. – 2001. – Vol. 78. – P. 42–53.
  • 16. Mayhew J., Beart P.M., Walker F.R. Astrocyte and microglial control of glutamatergic signaling: a primer on understanding the disruptive role of chronic stress // J Neuroendocrinol. – 2015. – Vol. 43. – P. 74–89.
  • 17. Guillemin G.J. Quinolinic acid, the inescapable neurotoxin // The FEBS Journal. 2012. – Vol. 122. – P. 1–18.
  • 18. Halaris A., Myint A.M., Savant V. et al. Does escitalopram reduce neurotoxicity in major depression? // Journal of Psychiatric Research. – 2015. – Vol. 93. – P. 66–67.
  • 19. Stipek S., Stastny F., Platenik J. et al. The effect of quinolinate on rat brain lipid peroxidation is dependent on iron // Neurochem Int. – 1997. – Vol. 30. – P. 233–237.
  • 20. Busse M., Busse S., Myint A.M. et al. Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses? // Eur Arch Psychiatry Clin Neurosci. – 2014. – Vol. 25. – P. 13–19.
  • 21. Steiner J., Walter M., Gos T. et al. Severe depression is associated with increased quinolinic acid immunoreactivity in the dorsal and ventral anterior cingulum: further evidence for an immune modulation of glutamatergic neurotransmission? // Journal Neuroinflammation. – 2011. – Vol. 8. – P. 94.
  • 22. Savitz J., Drevets W.C., Smith C.M. et al. Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder // Neuropsychopharmacology. – 2015. – Vol. 40. – P. 463–471.
  • 23. Ogawa S., Fujii T., Koga N., et al. Plasma L-tryptophan concentration in major depressive disorder: new data and meta-analysis // J Clin Psychiatry. – 2014. – Vol. 75. – P. 906–915.
  • 24. Savitz J., Drevets W.C., Wurfel B.E., et al. Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder // Brain Behav Immun. – 2015. – Vol. 25. – P. 123–131.
  • 25. Erhardt S., Lim C.K., Linderholm K.R. et al. Connecting inflammation with glutamate agonism in suicidality // Neuropsychopharmacology. – 2013. – Vol. 90. – P. 1–10.
  • 26. Bay-Richter C., Linderholm K.R., Lim C.K. et al. A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality // Brain Behav Immun. – 2015. – Vol. 43. – P. 40–43.
  • 27. Calarge C.A. Central Kynurenine pathway in depression in young adults: relevance to suicidality // Journal of the American Academy of Child and Adolescent Psychiatry. – 2016. – Vol. 55. – P. 45–49.
  • 28. Quak J., Doornbos B., Roest A.M., et al. Does tryptophan degradation along the kynurenine pathway mediate the association between pro-inflammatory immune activity and depressive symptoms? // Psychoneuroendocrinology. – 2014. – Vol. 45. – P. 202–210.
  • 29. Hughes M.M., Carballedo A., McLoughlin D.M. et al. Tryptophan depletion in depressed patients occurs independent of kynurenine pathway activation // Brain Behav Immun. – 2012. – Vol. 26. – P. 979–987.
  • 30. Gabbay V., Ely B.A., Babb J. et al. The possible role of the kynurenine pathway in anhedonia in adolescents // J Neural Transm. – 2012. – Vol. 119. – P. 253–260.
  • 31. Kuwano N., Kato T.A., Setoyama D. et al. Tryptophan-kynurenine and lipid related metabolites as blood biomarkers for first-episode drug-naive patients with major depressive disorder: An exploratory pilot case-control study // Journal of Affective Disorders. – 2018. – Vol. 231. – P. 74–82.
  • 32. Conwell Y., Heisel M.J., Simon R.I. et al. The american psychiatric publishing textbook of suicide assessment and management. − Arlington, VA: American Psychiatric Publishing, 2012. − Vol. 420. − P. 367–388.
  • 33. Zhu H., Bogdanov M.B., Boyle S.H. et al. Pharmacometabolomics of response to sertraline and to placebo in major depressive disorder - possible role for methoxyindole pathway // PLoS One. − 2013. − Vol. 8. − P. 682−683.
  • 34. Zoga M., Oulis P., Chatzipanagiotou S. et al. Indoleamine 2,3-dioxygenase and immune changes under antidepressive treatment in major depression in females // In Vivo. − 2014. − Vol. 28. – P. 633–638.
  • 35. Ogyu K., Kubo K., Noda Y. et al. Kynurenine pathway in depression: A systematic review and meta-analysis // Neuroscience and Biobehavioral reviews. − 2018. − Vol. 90. − P. 16−25.
  • 36. Mackay G.M., Forrest C.M., Christofides J. et al. Kynurenine metabolites and inflammation markers in depressed patients treated with fluoxetine or counseling // Clin Exp Pharmacol Physiol. − 2009. − Vol. 36. − P. 425–435.
  • 37. Kocki T., Wnuk S., Kloc R. et al. New insight into the antidepressants action: modulation of kynurenine pathway by increasing the kynurenic acid/3-hydroxykynurenine ratio // J Neural Transm. − 2012. − Vol. 119. − P. 235–243.
  • 38. Krause D., Myint A., Shuett C. et al. High Kynurenine (f Tryptophan Metabolite) Predicts Remission in Patients with Major Depression to Add-on Treatment with Celecoxib // Frontiers in Psychiatry. − 2017. − Vol. 45. − P. 112−135.