Входя на эту страницу, Вы подтверждаете, что являетесь  медицинским работником.

Status message

Not the entire site translated, but only to "Magazine"

Resting State Networks in Depression and Perspectives for Personalized Transcranial Magnetic Stimulation

B.A. Аntonovich 1, L.A. Mayorova 2, E.E. Tsukarzi 1, E.E. Tsukarzi 1

1 Federal State Budgetary Institution “Federal Medical Research Centre for Psyciatry and Narcology” of the Ministry of Health of the Russian Federation, Moscow, Russiaия

2 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia; Speech Pathology and Neurorehabilitation Center, Moscow, Russia

Resume
The limited effectiveness of the standard TMS technique in the treatment of depressive spectrum disorders, individual differences, on the one hand, in the clinical manifestations of depression, and on the other, in the work of brain networks, dictate the need for a personalized approach. This review focuses on functional brain connectivity in depression. The article presents a description of the three intrinsic brain networks, as well as features of their work and interaction found in depression in a number of studies. Research data on endophenotypes of depression are also presented as one attempt to find correlations between the clinical manifestations of depressive disorders and the peculiarities of the work of brain networks. Presents research data that describes the effect of TMS on these neural networks, as well as research options for the personification of therapy. Based on the review, conclusions were made about the prospects for personalization, several new TMS techniques using neuronavigation were proposed.

Contact: profmosolov@mail.ru (Mosolov S.N.)

References: 

1. Depressiya [E`lektronny`j resurs]. – URL: https://www.who.int/ru/news-room/fact-sheets/detail/depression (data obrashheniya 14.02.2019).
2. Beck A.T. Cognitive therapy. A 30-year retrospective // A Psychol. – 1991. – Vol. 46, No. 4. – P. 368–375.
3. Abramson L.Y., Metalsky G.I., Alloy L.B. Hopelessness depression: A theory-based subtype of depression // Psychol Rev. – 1989. – Vol. 96, No. 2. – P. 358–372.
4. Nolen-Hoeksema S. Responses to depression and their effects on the duration of depressive episodes // J Abnorm Psychol. – 1991. – Vol. 100, No. 4. – P. 569–582.
5. Carver C.S., Johnson S.L., Joormann J. Major depressive disorder and impulsive reactivity to emotion: toward a dual-process view of depression // Br J Clin Psychol. – 2013. – Vol. 52, No. 3. – P. 285–299.
6. Phillips W.J., Hine D.W. Exploring the factor structure of implicit and explicit cognitions associated with depression // Assessment. – 2013. – Vol. 20, No. 4. – P. 474–483.
7. Elgersma H.J., Glashouwer K.A., Bockting C.L.H. et al. Hidden scars in depression? Implicit and explicit self-associations following recurrent depressive episodes // J Abnorm Psychol. – 2013. – Vol. 122, No. 4. – P. 951–960.
8. Haeffel G.J., Abramson L.Y., Brazy P.C. et al. Explicit and implicit cognition: a preliminary test of a dual-process theory of cognitive vulnerability to depression // Behav Res Ther. – 2007. – Vol. 45, No. 6. – P. 1155–1167.
9. Beevers C.G. Cognitive vulnerability to depression: a dual process model // Clin Psychol Rev. – 2005. – Vol. 25, No. 7. – P. 975–1002.
10. Cole M.W., Bassett D.S., Power J.D. et al. Intrinsic and task-evoked network architectures of the human brain // Neuron. – 2014. – Vol. 83, No. 1. – P. 238–251.
11. Hutchison R.M., Womelsdorf T., Allen E.A. et al. Dynamic functional connectivity: promise, issues, and interpretations // NeuroImage. – 2013. – Vol. 80. – P. 360–378.
12. Northoff G., Qin P., Nakao T. Rest-stimulus interaction in the brain: a review // Trends Neurosci. – 2010. – Vol. 33, No. 6. – P. 277–284.
13. Wang L., Hermens D.F., Hickie I.B. et al. A systematic review of resting-state functional-MRI studies in major depression // J Affect Disord. – 2012. – Vol. 142, No. 1–3. – P. 6–12.
14. Lebedeva N.N., Majorova L.A., Samotaeva I.S. Funkcional`ny`j konnektom: seti pokoya (resting state networs) pri nekotory`x nevrologicheskix i psixiatricheskix sostoyaniyax // Uspexi fiziologicheskix nauk. – 2017. – No. 3. – S. 29–44.
15. Wang X., Öngür D., Auerbach R.P. et al. Cognitive vulnerability to major depression: view from the intrinsic network and cross-network interactions // Harv Rev Psychiatry. – 2016. – Vol. 24, No. 3. – P. 188–201.
16. Andrews-Hanna J.R. The brain’s default network and its adaptive role in internal mentation // Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. – 2012. – Vol. 18, No. 3. – P. 251–270.
17. Greicius M.D., Flores B.H., Menon V. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus // Biol Psychiatry. – 2007. – Vol. 62, No. 5. – P. 429–437.
18. Belleau E.L., Taubitz L.E., Larson C.L. Imbalance of default mode and regulatory networks during externally focused processing in depression // Soc Cogn Affect Neurosci. – 2015. – Vol. 10, No. 5. – P. 744–751.
19. Gaffrey M.S., Luby J.L., Botteron K. et al. Default mode network connectivity in children with a history of preschool onset depression // J Child Psychol Psychiatry. – 2012. – Vol. 53, No. 9. – P. 964–972.
20. Ho T.C., Connolly C.G., Henje Blom E. et al. Emotion-dependent functional connectivity of the default mode network in adolescent depression // Biol Psychiatry. – 2015. – Vol. 78, No. 9. – P. 635–646.
21. Wang L., Xia M., Li K. et al. The effects of antidepressant treatment on resting-state functional brain networks in patients with major depressive disorder // Hum Brain Mapp. – 2015. – Vol. 36, No. 2. – P. 768–778.
22. Spies M., Kraus C., Geissberger N. et al. Default mode network deactivation during emotion processing predicts early antidepressant response // Transl Psychiatry. – 2017. – Vol. 7, No. 1. – e1008.
23. Arnone D., Wise T., Walker C. et al. The effects of serotonin modulation on medial prefrontal connectivity strength and stability: A pharmacological fMRI study with citalopram // Prog Neuropsychopharmacol Biol Psychiatry. – 2018. – Vol. 84, Pt. A. – P. 152–159.
24. Shen Y., Yao J., Jiang X. et al. Sub-hubs of baseline functional brain networks are related to early improvement following two-week pharmacological therapy for major depressive disorder // Hum Brain Mapp. – 2015. – Vol. 36, No. 8. – P. 2915–2927.
25. Johnson M.K., Nolen-Hoeksema S., Mitchell K.J. et al. Medial cortex activity, self-reflection and depression // Soc Cogn Affect Neurosci. – 2009. – Vol. 4, No. 4. – P. 313–327.
26. Kry`lov V.I. Psixopatologicheskie osobennosti i diagnosticheskoe znachenie fenomena ruminacij // Psixiatriya i psixofarmakoterapiya. – 2015. – No. 5–6. – S. 9–12.
27. Mel`nikov M.E., Bezmaterny`x D.D., Shubina O.S. i dr. Vizualizaciya aktivnosti golovnogo mozga pri depressii s pomoshh`yu funkcional`noj magnitnorezonansnoj tomografii: metodiki i rezul`taty` // Uspexi fiziologicheskix nauk. – 2017. – No. 2. – S. 43–71.
28. Pugovkina O.D. Globalizaciya avtobiograficheskoj pamyati − kognitivny`j faktor riska vozniknoveniya i xronifikacii depressivny`x rasstrojstv // Sovremennaya terapiya psixicheskix rasstrojstv. – 2017. – No. 4. – S. 30–35.
29. Schwert C., Aschenbrenner S., Weisbrod M. et al. Cognitive impairments in unipolar depression: The impact of rumination // Psychopathology. – 2017. – Vol. 50, No. 5. – P. 347–354.
30. Kertz S.J., Petersen D.R., Stevens K.T. Cognitive and attentional vulnerability to depression in youth: A review // Clin Psychol Rev. – 2019. – Vol. 71. – P. 63–77.
31. Grimm S., Boesiger P., Beck J. et al. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects // Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. – 2009. – Vol. 34, No. 4. – P. 932–943.
32. Kaiser R.H., Andrews-Hanna J.R., Spielberg J.M. et al. Distracted and down: neural mechanisms of affective interference in subclinical depression // Soc Cogn Affect Neurosci. – 2015. – Vol. 10, No. 5. – P. 654–663.
33. Vasic N., Walter H., Sambataro F. et al. Aberrant functional connectivity of dorsolateral prefrontal and cingulate networks in patients with major depression during working memory processing // Psychol Med. – 2009. – Vol. 39, No. 6. – P. 977–987.
34. Ho T.C., Yang G., Wu J. et al. Functional connectivity of negative emotional processing in adolescent depression // J Affect Disord. – 2014. – Vol. 155. – P. 65–74.
35. Rude S.S., Wenzlaff R.M., Gibbs B. et al. Negative processing biases predict subsequent depressive symptoms // Cogn Emot. – 2002. – Vol. 16, No. 3. – P. 423–440.
36. Joormann J., Gotlib I.H. Updating the contents of working memory in depression: interference from irrelevant negative material // J Abnorm Psychol. – 2008. – Vol. 117, No. 1. – P. 182–192.
37. Holmes A.J., Pizzagalli D.A. Spatiotemporal dynamics of error processing dysfunctions in major depressive disorder // Arch Gen Psychiatry. – 2008. – Vol. 65, No. 2. – P. 179–188.
38. Nixon N.L., Liddle P.F., Nixon E. et al. Biological vulnerability to depression: linked structural and functional brain network findings // Br J Psychiatry J Ment Sci. – 2014. – Vol. 204. – P. 283–289.
39. Bush null, Luu null, Posner null. Cognitive and emotional influences in anterior cingulate cortex // Trends Cogn Sci. – 2000. – Vol. 4, No. 6. – P. 215–222.
40. Ma Y. Neuropsychological mechanism underlying antidepressant effect: a systematic meta-analysis // Mol Psychiatry. – 2015. – Vol. 20, No. 3. – P. 311–319.
41. Kanske P., Heissler J., Schönfelder S. et al. How to regulate emotion? Neural networks for reappraisal and distraction // Cereb Cortex. – 2011. – Vol. 21, No. 6. – P. 1379–1388.
42. Rive M.M., van Rooijen G., Veltman D.J. et al. Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies // Neurosci Biobehav Rev. – 2013. – Vol. 37, No. 10, Pt. 2. – P. 2529–2553.
43. Ochsner K.N., Silvers J.A., Buhle J.T. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion // Ann NY Acad Sci. – 2012. – Vol. 1251. – P. E1−24.
44. Smoski M.J., Keng S.-L., Schiller C.E. et al. Neural mechanisms of cognitive reappraisal in remitted major depressive disorder // J Affect Disord. – 2013. – Vol. 151, No. 1. – P. 171–177.
45. Erk S., Mikschl A., Stier S. et al. Acute and sustained effects of cognitive emotion regulation in major depression // J Neurosci Off J Soc Neurosci. – 2010. – Vol. 30, No. 47. – P. 15726–15734.
46. Johnstone T., van Reekum C.M., Urry H.L. et al. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression // J Neurosci Off J Soc Neurosci. – 2007. – Vol. 27, No. 33. – P. 8877–8884.
47. Dillon D.G., Pizzagalli D.A. Evidence of successful modulation of brain activation and subjective experience during reappraisal of negative emotion in unmedicated depression // Psychiatry Res. – 2013. – Vol. 212, No. 2. – P. 99–107.
48. Farb N.A.S., Anderson A.K., Bloch R.T. et al. Mood-linked responses in medial prefrontal cortex predict relapse in patients with recurrent unipolar depression // Biol Psychiatry. – 2011. – Vol. 70, No. 4. – P. 366–372.
49. Schiller C.E., Minkel J., Smoski M.J. et al. Remitted major depression is characterized by reduced prefrontal cortex reactivity to reward loss // J Affect Disord. – 2013. – Vol. 151, No. 2. – P. 756–762.
50. Nixon N.L., Liddle P.F., Worwood G. et al. Prefrontal cortex function in remitted major depressive disorder // Psychol Med. – 2013. – Vol. 43, No. 6. – P. 1219–1230.
51. Anticevic A., Cole M.W., Murray J.D. et al. The role of default network deactivation in cognition and disease // Trends Cogn Sci. – 2012. – Vol. 16, No. 12. – P. 584–592.
52. Fox M.D., Snyder A.Z., Vincent J.L. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks // Proc Natl Acad Sci USA. – 2005. – Vol. 102, No. 27. – P. 9673–9678.
53. Chai X.J., Ofen N., Gabrieli J.D.E. et al. Selective development of anticorrelated networks in the intrinsic functional organization of the human brain // J Cogn Neurosci. – 2014. – Vol. 26, No. 3. – P. 501–513.
54. Seeley W.W., Menon V., Schatzberg A.F. et al. Dissociable intrinsic connectivity networks for salience processing and executive control // J Neurosci Off J Soc Neurosci. – 2007. – Vol. 27, No. 9. – P. 2349–2356.
55. Greicius M.D., Srivastava G., Reiss A.L., et al. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI // Proc Natl Acad Sci USA. – 2004. – Vol. 101, No. 13. – P. 4637–4642.
56. Connolly C.G., Wu J., Ho T.C., et al. Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents // Biol Psychiatry. – 2013. – Vol. 74, No. 12. – P. 898–907.
57. Disner S.G., Beevers C.G., Haigh E.A.P., et al. Neural mechanisms of the cognitive model of depression // Nat Rev Neurosci. – 2011. – Vol. 12, No. 8. – P. 467–477.
58. Johnson M.K., Nolen-Hoeksema S., Mitchell K.J., et al. Medial cortex activity, self-reflection and depression // Soc Cogn Affect Neurosci. – 2009. – Vol. 4, No. 4. – P. 313–327.
59. Hamilton J.P., Furman D.J., Chang C. et al. Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination // Biol Psychiatry. – 2011. – Vol. 70, No. 4. – P. 327–333.
60. Davey C.G., Yücel M., Allen N.B. et al. Task-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder // Front Psychiatry. – 2012. – Vol. 3. – P. 14.
61. Sridharan D., Levitin D.J., Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks // Proc Natl Acad Sci USA. – 2008. – Vol. 105, No. 34. – P. 12569–12574.
62. Goulden N., Khusnulina A., Davis N.J., et al. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM // NeuroImage. – 2014. – Vol. 99. – P. 180–190.
63. Dong D., Ming Q., Zhong X., et al. State-independent alterations of intrinsic brain network in current and remitted depression // Prog Neuropsychopharmacol Biol Psychiatry. – 2019. – Vol. 89. – P. 475–480.
64. Berlim M.T., Van den Eynde F., Daskalakis Z.J. High-frequency repetitive transcranial magnetic stimulation accelerates and enhances the clinical response to antidepressants in major depression: a meta-analysis of randomized, double-blind, and sham-controlled trials // J Clin Psychiatry. – 2013. – Vol. 74, No. 2. – P. e122-129.
65. Dunner D.L., Aaronson S.T., Sackeim H.A., et al. A multisite, naturalistic, observational study of transcranial magnetic stimulation for patients with pharmacoresistant major depressive disorder: durability of benefit over a 1-year follow-up period // J Clin Psychiatry. – 2014. – Vol. 75, No. 12. – P. 1394–1401.
66. Potapov I.V., Czukarzi E`.E`., Mosolov S.N. Primenenie transkranial`noj magnitnoj stimulyacii pri rezistentnom verbal`nom gallyucinoze // Obozrenie psixiatrii i medicinskoj psixologii imeni V.M. Bextereva. – 2014. – № 1. – S. 23–33.
67. Kapiletti S.G., Czukarzi E`.E`., Mosolov S.N. Transkranial`naya magnitnaya stimulyaciya v terapii obsessivno-kompul`sivnogo rasstrojstva // Social`naya i klinicheskaya psixiatriya. – 2008. – № 1. – S. 42–46.
68. Maslenikov N.V., Czukarzi E`.E`., Mosolov S.N. Depressii pri shizofrenii: ocenka kognitivny`x funkcij v dinamike pri lechenii transkranial`noj magnitnoj stimulyaciej // Social`naya i klinicheskaya psixiatriya. – 2013. – № 1. – S. 5−11.
69. Maslenikov N.V., Czukarzi E`.E`., Mosolov S.N. E`ffektivnost` transkranial`noj magnitnoj stimulyacii pri depressiyax u bol`ny`x shizofreniej // Obozrenie psixiatrii i medicinskoj psixologii imeni V.M. Bextereva. – 2010. − № 2. – S. 14–18.
70. Manasevich A.G., Czukarzi E`.E`., Mosolov S.N. Rasstrojstva sna kak vozmozhny`j biologicheskij marker depressii i e`ffektivnosti ee terapii posredstvom transkranial`noj magnitnoj stimulyacii // Sovremennaya terapiya psixicheskix rasstrojstv. – 2018. – № 2. – S. 2–13.
71. Il`in S.A., Czukarzi E`.E`., Mosolov S.N. Sravnitel`naya e`ffektivnost` i perenosimost` ciklicheskoj transkranial`noj magnitnoj stimulyacii i e`lektrosudorozhnoj terapii pri zatyazhny`x, terapevticheski rezistentny`x depressiyax // Social`naya i klinicheskaya psixiatriya. – 2008. – № 2. – S. 73–79.
72. Schutter D.J.L.G. Quantitative review of the efficacy of slow-frequency magnetic brain stimulation in major depressive disorder // Psychol Med. – 2010. – Vol. 40, No. 11. – P. 1789–1795.
73. Slotema C.W., Blom J.D., van Lutterveld R. et al. Review of the efficacy of transcranial magnetic stimulation for auditory verbal hallucinations // Biol. Psychiatry. – 2014. – Vol. 76, No. 2. – P. 101–110.
74. O’Reardon J.P., Solvason H.B., Janicak P.G. et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial // Biol Psychiatry. – 2007. – Vol. 62, No. 11. – P. 1208–1216.
75. Berlim M.T., van den Eynde F., Tovar-Perdomo S., et al. Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials // Psychol Med. – 2014. – Vol. 44, No. 2. – P. 225–239.
76. Downar J., Daskalakis Z.J. New targets for rTMS in depression: a review of convergent evidence // Brain Stimulat. – 2013. – Vol. 6, No. 3. – P. 231–240.
77. Fitzgerald P.B., Hoy K., McQueen S. et al. A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression // Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. – 2009. – Vol. 34, No. 5. – P. 1255–1262.
78. Sack A.T., Cohen Kadosh R., Schuhmann T. et al. Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods // J Cogn Neurosci. – 2009. – Vol. 21, No. 2. – P. 207–221.
79. Chen A.C., Oathes D.J., Chang C. et al. Causal interactions between fronto-parietal central executive and default-mode networks in humans // Proc Natl Acad Sci USA. – 2013. – Vol. 110, No. 49. – P. 19944–19949.
80. Fox M.D., Buckner R.L., White M.P. et al. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate // Biol Psychiatry. – 2012. – Vol. 72, No. 7. – P. 595–603.
81. Liston C., Chen A.C., Zebley B.D. et al. Default mode network mechanisms of transcranial magnetic stimulation in depression // Biol Psychiatry. – 2014. – Vol. 76, No. 7. – P. 517–526.
82. Ge R., Downar J., Blumberger D.M. et al. Structural network integrity of the central executive network is associated with the therapeutic effect of rTMS in treatment resistant depression // Prog Neuropsychopharmacol Biol Psychiatry. – 2019. – Vol. 92. – P. 217–225.
83. Sollmann N., Zhang H., Castrillón G.et al. Intra- and inter-network effects of navigated transcranial magnetic stimulation using low- and high-frequency pulse application to the dorsolateral prefrontal cortex – a combined rTMS-fMRI approach // Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. – 2019. – Vol. 12, No. 2. – P. 467.
84. Chand G.B., Wu J., Hajjar I., et al. Interactions of the Salience Network and Its Subsystems with the Default-Mode and the Central-Executive Networks in Normal Aging and Mild Cognitive Impairment // Brain Connect. – 2017. – Vol. 7, No. 7. – P. 401–412.
85. Sridharan D., Levitin D.J., Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks // Proc Natl Acad Sci USA. – 2008. – Vol. 105, No. 34. – P. 12569–12574.
86. Dinga R., Schmaal L., Penninx B.W.J.H. et al. Evaluating the evidence for biotypes of depression: Methodological replication and extension of Drysdale et al. (2017) // Neuro Image Clin. – 2019. – Vol. 22. – P. 1-11.
87. Drysdale A.T., Grosenick L., Downar J. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression // Nat Med. – 2017. – Vol. 23, No. 1. – P. 28–38.
88. Sliwinska M.W., Vitello S., Devlin J.T. Transcranial magnetic stimulation for investigating causal brain-behavioral relationships and their time course // J Vis Exp JoVE. – 2014. No. 89. − e51735.
89. Schilberg L., Schuhmann T., Sack A.T. Interindividual variability and intraindividual reliability of intermittent theta burst stimulation-induced neuroplasticity mechanisms in the healthy brain // J Cogn Neurosci. – 2017. – Vol. 29, No. 6. – P. 1022–1032.
90. Cantone M., Bramanti A., Lanza G. et al. Cortical Plasticity in Depression // ASN Neuro. – 2017. – Vol. 9, No. 3. – P. 1−15.
91. Huang Y.-J., Lane H.-Y., Lin C.-H. New treatment strategies of depression: Based on mechanisms related to neuroplasticity // Neural Plast. – 2017. – Vol. 2017. – P. 1−11.